Decoy Damaged DNA Discovers New Gene Repair Protein

Research identifies HNRNPD as a new safeguard of genome integrity


Luigi Alfano (left), Antonio Giordano (center), Francesca Pentimalli (right)

Newswise — Researchers used a synthetic DNA structure to mimic an intermediate of homologous recombination, the most reliable cell cycle process to repair DNA correctly. This DNA structure was then used as bait to capture nuclear proteins in the hopes of identifying a new player in the cellular response to DNA damage. These proteins were isolated and subsequently identified through mass spectrometry, revealing that the Heterogeneous Nuclear Ribonucleoprotein D (HNRNPD) was indeed able to bind chromatin DNA, a prerequisite for a protein involved in DNA repair, and to re-localize specifically onto DNA damaged sites.

The study reporting on this newly discovered role for HNRNPD, previously known for its role in messenger RNA regulation, was recently published in Nucleic Acids Research, one of the most authoritative journals in the field, from the Oxford Academic Press, by the research team lead by Antonio Giordano, M.D., Ph.D., Director of the Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, and Professor of Pathology, University of Siena, Italy.

Because protecting the genome against DNA damage is crucial to prevent harmful mutations and cancer development, the authors utilized a ‘gene fishing’ approach using the synthetic DNA structure that was designed by Luigi Alfano, a postdoctoral fellow at the National Cancer Institute of Naples, Pascale Foundation-CROM in Mercogliano, working in the Cell Cycle & Cancer Lab coordinated by Francesca Pentimalli, a longtime collaborator of Prof. Giordano and Adjunct Professor at the Sbarro Institute. The captured proteins were analyzed under mass spectrometry by Luca Bini and Claudia Landi at the University of Siena. Alfano and colleagues focused on the RNA-binding protein HNRNPD, the loss of which induces cell senescence and premature aging in mice, two features associated with a defective DNA damage response.

Upon DNA damage, cells activate homologous recombination repair to cut the DNA near the break (a process known as DNA end resection), generating a single stranded DNA tail that is able to find the complementary homologous sequence within the sister chromatid, using it as a template for faithful repair. The authors found that silencing HNRNPD expression impaired the DNA end resection process, affecting the overall DNA damage response. Similarly, depleting HNRNPD through CRISPR/Cas9-mediated gene editing, impaired the cell response to DNA damage induced by the chemotherapy drug camptothecin, making cancer cells more susceptible to this drug and also to olaparib, a drug that targets specifically the DNA repair process used against some types of breast and ovarian cancer.

“The inhibition of HNRNPD, through chemical compounds, can be used as a new strategy for cancer treatment in a combination therapy with the PARP1 inhibitor (Olaparib),” Giordano says. “Based on the concept of synthetic lethality, this potential clinical application is analogous to the situation described for the BRCA cancers.”

Delving deeper into the underlying molecular mechanisms, the authors found that HNRNPD interacts with SAF-A, another RNA-binding protein previously found correlated to the DNA damage response. The authors showed that HNRNPD silencing impaired the loading of SAF-A onto chromatin upon DNA damage. Moreover, HNRNPD silencing caused an accumulation, onto damaged DNA, of DNA:RNA hybrids (also called R-loops) whose proper removal is required to preserve genome integrity. Indeed, expressing RNase H, an enzyme that digests the RNA within the hybrids, or inhibiting RNA formation through alpha-amanitin, could rescue the phenotype of HNRNPD knockout cells, reinstating an effective DNA damage response.

“Overall, our data strengthens the role of RNA-binding proteins in the DNA repair mechanism and identify HNRNPD as a new key player in DNA repair,”  says lead author Alfano. “They also provide new clues on the still poorly defined function of R-loop role in DNA damage repair.”

“Targeting DNA repair pathways proved to be a powerful approach for cancer therapy, as epitomized by the clinical use of olaparib for various tumors,” say co-authors Pentimalli and Giordano. “The identification of HNRNPD as an homologous recombination protein could be useful to design new synthetic lethal approaches and also inform genome editing strategies that use endogenous cell repair pathways to modify DNA sequences.”

The discovery caught the attention of Italian Deputy Prime Minister and Minister of the Interior, Matteo Salvini, commenting on Facebook, “Exceptional discovery by the team of Italian researchers led by Professor Antonio Giordano. You are the symbol of the best minds of our country in the world.”

Also sending congratulations via social media, Minister of Education, University and Research Marco Bussetti wrote on Twitter, “Congratulations to the team led by Professor Antonio Giordano, who I recently appointed to the Governing Committee of the newly established Southern University in Naples.”

About the Sbarro Health Research Organization

The Sbarro Health Research Organization (SHRO) is non-profit charity committed to funding excellence in basic genetic research to cure and diagnose cancer, cardiovascular diseases, diabetes and other chronic illnesses and to foster the training of young doctors in a spirit of professionalism and humanism. To learn more about the SHRO please visit


Original NewsWise Release           PubMed Abstract

Potential to Better Treat Mesothelioma Revealed by Precision Medicine Research

Newswise — Researchers have successfully identified two genetic markers for potentially effective treatment of Mesothelioma, an orphan disease most commonly associated with asbestos exposure, and for which few treatments exist. Two recent studies co-authored by researchers from the Sbarro Health Research Organization (SHRO) at Temple University describe the findings of the relationship between p53, BAP1, and Mesothelioma, and the treatment pathways they may reveal.

Published in October, 2018, the paper “p53 Modeling as a Route to Mesothelioma Patients Stratification and Novel Therapeutic Identification,” appeared in the Journal of Translational Medicine, and January, “BAP1 Status Determines the Sensitivity of Malignant Mesothelioma Cells to Gemcitabine Treatment,” was published in the International Journal of Molecular Sciences.

The studies represent the potential of Personalised Medicine, an innovative approach to clinical medicine meant to customize treatment for an individual patient. In oncology, this most often refers to gene expression-based therapeutic decisions aimed at the identification of “driving genes” responsible for carcinogenesis and tumour progression.

Unfortunately, in the clinical setting, the simple idea of finding one mutated gene causing cancer is rare, and despite some encouraging results, only 4-7% of patients really benefit from treatment based on the tumour genetic profile. Complications such as tumor heterogeneity may determine the poor performance of genetic profiling to reveal effective treatments: different genetic profiles co-exist within the same tumour, epigenetic abnormalities not directly affecting DNA are indirectly responsible for genome expression, and the tumor microenvironment can also exert a pivotal role in gene expression.

In spite of these challenges, researchers have identified ways in which p53, a well-known tumor suppressor gene, may be used to stratify patients for the most favorable treatment protocol. Often referred to as the “guardian of the genome,” p53 functions to limit the proliferation of deformed cells and cells with imperfectly replicated DNA.

The prevalence of p53 inactivation in Mesothelioma prompted researchers to carry out a combined biological and bioinformatic study to explore how data about p53 can be used in translational research. The comparison of model simulations with experimental data resulted in a successful prediction from 52-85%, depending on the drug, algorithm, or sample used for validation.

“This study offers a good approach to test the real impact of genetic studies in precision medicine,” says Luciano Mutti, M.D., Adjunct Professor of Translational Oncology, SHRO, and co-author of the study. “We included in silico and in vitro analysis with cellular validation of the p53 model,” Mutti says, “and we believe it will have a potential for use in Mesothelioma treatment by identifying patient sub-populations that are likely to respond to particular drugs.”

The model may also aid in the identification chemotherapy resistance, the authors conclude, which is common in Mesothelioma.

Mutti collaborated on the study with Marija Krstic-Demonacos, Ph.D., Chair of Molecular Medicine at the University of Salford in Manchester, UK. The authors would like to thank the non-profit association Gruppo Italiano Mesotelioma (GIMe) for their support.

BRCA Associated 1 gene (BAP1) is another tumour suppressor gene recently shown to be inactivated in up to 60% patients with Mesothelioma. Therefore, researchers designed a study to exploit the strictly defined role of BAP1 to repair imperfections in cellular DNA, and tested for indications that BAP1 status could drive chemosensitivity and help identify the right drugs for Mesothelioma treatment. For example, testing the effect of the common Mesothelioma chemotherapy agent, Gemcitibine, on tumor cells with either normal or inactivated BAP1, researchers found that the cells with inactivated BAP1 were resistant to the effects of Gemcitabine, rendering the chemotherapy less effective.

“The results have been unusually clear-cut,” says Antonio Giordano, M.D., Ph.D., Director of SHRO, and co-author of the paper with Mutti, “and further study of BAP1 and p53 can help us identify the best treatment for Mesothelioma in clinical oncology.

“These studies serve as a sign that Personalised Medicine can become an important weapon against Mesothelioma,” Giordano concludes.

NewsWise Release

Metastatic Breast Cancer Survival Improves with New CDK-Inhibitor Plus Endocrine Therapy

Patients with HER2 negative, hormonal receptor positive metastatic breast cancer experienced improved survival when treated with a combination of endocrine therapy and the new CDK-inhibitor, palbociclib. Results from a recent study, published in the Journal of Cell Physiology, suggest that palbociclib, in combination with either letrozole, an aromatase inhibitor, or fulvestrant, a selective estrogen receptor down-regulator, improves the so-called progression free survival in women with HR+HER2-metatastatic breast cancer by as much as 10 months when compared to endocrine therapy alone.

The study, “Palbociclib plus endocrine therapy in HER2 negative, hormonal receptor positive, advanced breast cancer. A real-world experience,” was conducted by a multidisciplinary Italian-American team with a long and productive history of collaboration with Prof. Antonio Giordano, M.D., Ph. D., Director of the Sbarro Institute for Cancer Research, and the Sbarro Health Research Organization, Temple University.

“Palbociclib is the first of a new class of drugs that work by inhibiting two crucial cell division proteins called CDK4 and CDK6,” explains Dr. Patrizia Vici, medical oncologist at the Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

In the study, researchers focused on the use of Palbociclib in clinical practice, in order to collect data on the new drug’s efficacy and toxicity in support of evidence established from clinical trials.

“In this study, we sought confirmative evidence from the real world setting concerning the use of palbociclib in HR+HER2-metatastatic breast cancer,” says Dr. Maddalena Barba, researcher at the Regina Elena National Cancer Institute of Rome. “Clinical trial results do not always tell us everything we need to know for the clinical setting, because metastatic breast cancer patients are often heavily pre-treated, and may present related comorbidities.”

“When globally considered, these characteristics may be more often associated with less favorable outcomes,” says Barba.

“Overall, the evidence emerged from this cohort of Italian HR+HER2-metatastatic breast cancer patients, the largest ever treated with palbociclib in clinical practice so far, confirming the efficacy and toxicity data from the clinical trials,” explains Giordano, senior scientist and scientific advisor for the entire project.

“In addition, some intriguing findings have emerged from subgroup analyses showing less favorable outcomes in women pre-treated with the chemotherapy agent everolimus,” says Giordano. “This is a first time finding, which suggests the need for confirmation and further investigation of the underlying mechanisms in a future study.”

Original Newswise Post              Pubmed Abstract           Journal of Cellular Physiology

SHRO Partners with Film Festival to Recognize Importance of Virtual Reality in Medicine and Celebrate Italian-Origin Filmmakers

SHRO-Italian-film-festivalNewswise — The Sbarro Health Research Organization (SHRO) at Temple University is dedicated to international research collaboration between American and Italian scientists, continuing the legacy of Italian leadership in the sciences since the time of ancient Rome. In that same tradition, SHRO has been thrilled to support Italian-American achievement in the arts, especially when those efforts serve the greater good through advocacy for public health and socially conscious subjects.

This week, SHRO partners with the Italian Movie Award International Film Festival to support Italian-American work in cinema, particularly in recognition for accomplishments with the use of Virtual Reality (VR) in applications in medicine. The annual film festival, held each summer in Pompeii, is holding the first ever companion event in New York to present jury prizes with criteria to promote Italian-origin filmmakers living abroad, with particular attention to inclusivity of the filmmaker’s gender, age, and diversity. The festival award ceremony takes place December 10 at the The Paley Center for Media in Manhattan.

“The Sbarro Health Research Organization is honored to participate in this year’s film festival awards and to support Italian-origin filmmakers around the world,” says Mina Massaro-Giordano, M.D. “The contributions of Italians to both medicine and culture represents a legacy that our organization is proud to carry on,” Massaro-Giordano says. As Professor of Clinical Ophthalmology at the University of Pennsylvania Scheie Eye Institute, Dr. Massaro-Giordano has collaborated with researchers at SHRO and is married to SHRO Director Antonio Giordano, M.D., Ph.D.

The theme of this year’s film festival focuses on the future, which organizers have emphasized to celebrate the potential for a better future when medical-scientific research, technology and entertainment meet. The festival aims to inspire the next generation of filmmakers to explore new technologies, such as VR, by disseminating extraordinary results and patents obtained in research by SHRO in the use of VR in the medical-scientific sector.

“We are proud to continue our multi-year collaboration between Italian Movie Award – International Film Festival and the Sbarro Health Research Organization, under the leadership of Dr. Antonio Giordano,” says Carlo Fumo, Italian film director and President and Artistic Director of the Festival.

“In particular this year, our theme dedicated to the Future underscores the importance of  progress made by SHRO in the application of Virtual Reality in scientific medical research for a better future for all mankind,” Fumo adds. “We are proud to honor their work as part of our festival.”

The event is in partnership with Plural + Youth Video Festival organized by the United Nations and in particular by UNAOC (United Nation Alliance Of Civilization), and the SHRO (Sbarro Health Research Organization) directed by Dr. Prof. Antonio Giordano.

About the Festival

Begun in 2009 by founder and current president, director Carlo Fumo, who came up with the idea of a cinematographic international festival that could enhance Italy’s unique cultural and historical heritage and its tourist industry. More than a simple festival event, but a proper network of young experts able to create audiovisual works, spread the cinematographic culture by screening works coming from all around the world, attracting great personalities of the cinema to attend, and educating young people by means of masters and advanced training workshops. All these features, gathered inside the great region of Campania, have created a unique cultural, tourist and educational institution.

About the Sbarro Health Research Organization

The Sbarro Health Research Organization (SHRO) is non-profit charity committed to funding excellence in basic genetic research to cure and diagnose cancer, cardiovascular diseases, diabetes and other chronic illnesses and to foster the training of young doctors in a spirit of professionalism and humanism. To learn more about the SHRO please visit


Original Newswise Reelase

Italian-American Foundation Honors Antonio Giordano, MD, PhD Founder & President of Sbarro Health Research Organization

2018-Giordano-IAFNewswise — Italian-American Foundation, Filitalia, honors Antonio Giordano, MD, PhD, Founder & President of Sbarro Health Research Organization at Temple University with the Humanitarian award at the foundation’s 31st Anniversary Gala.

Filitalia International & Foundation celebrates 31 years of commitment, dedication and service at their Annual Gala Dinner on Sunday, November 11, 2018. The foundation and its donors have contributed to initiatives championed by the Italian American community in the Greater Philadelphia area, among them the opening of the History of Italian Immigration Museum in 2014.

”The mission of this foundation is to help promote the talent of Italian-Americans in various industries and disciplines,” Giordano says, “ and considering that historically, Italy has generated great discoveries in the arts, medicine, and business, it is vital for us to carry on that tradition and maintain that legacy in the modern world.”

“To be recognized as an example of the contribution of Italian-Americans in this country, by a foundation that was created by other professional, successful Italians, is a great honor,” says Giordano.

In 1993, Antonio Giordano, M.D., Ph.D., founded the Sbarro Institute with a generous donation from Mario Sbarro, the Founder of the Sbarro restaurant chain, following Dr. Giordano’s discovery of the tumor suppressor gene pRb2. Giordano now serves as Director of the Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, at the College of Science and Technology, Temple University, as well as Professor of Pathology at the University of Siena, Italy.

Giordano recently organized the medical conference, “The Impact of Environment and Healthy Lifestyles in Human Health,” at the National Italian American Foundation (NIAF) annual convention, with awards for achievement in medicine presented from the Giovan Giacomo Giordano Foundation.

The research team lead by Giordano continues to make significant medical breakthroughs, including recent studies on the identification of a potential target for treatment of mesothelioma, understanding a protein that governs cell death in cancer, and further potential of the CDK9 gene to control the cell cycle.

The Filitalia International & Foundation celebrates their 31st anniversary with other honorees including Lee Norelli, AP Construction – President, UNICO National, and Dr. Louis De Angelo, Superintendent of Schools for the Diocese of Wilmington, DE.

About Filitalia International & Foundation

Filitalia International is a non profit organization, founded in 1987 to promote and preserve the Italian tradition, language and culture worldwide. The goal is to consolidate and expand the Italian heritage through social events and humanitarian programs. Filitalia is committed in several projects, such as scholarships, Italian language classes, networking for young professionals and cultural events, by encouraging anyone to learn more about Italy and its heritage.

The Filitalia Foundation 501 (c) 3 opened the History of Italian Immigration Museum with the aim to sustain Italian-American heritage through stories that resonate with diverse cultures, connecting the Italian-American community with its cultural roots, and sharing Italian heritage with people of all backgrounds.

The organization was founded by cardiologist Dr. Pasquale Nestico, inspired by a love for his birthplace, Isca sullo Ionio, in Calabria, Italy. Nestico is joined in leading the foundation by past president Rosetta Miriello, and incoming president Marc Virga.


President Marc Virga

Founder Pasquale F. Nestico, M.D.

Immediate Past President Rosetta Miriello

1st Vice President Paula DeSantics-Bonavitacola

2nd Vice & Governor Henry Amanto

Secretary Alexis Tulio

Treasurer Gianfranco Buonamici

Legal Counsel Joseph Rollo, Esq.

Auditor Ernest DiFilippo

Board Members

Anthony Colavita, MD – Joseph D’Ascenzo, Esq.

Anna Di Paola – Anna Di Nardo

Saverio Nestico – Giacomo Presta

Mario Presta – Salvatore Rosati – Nicholas Santangelo

Executive Director

Marco Circelli

About the Sbarro Health Research Organization

The Sbarro Health Research Organization (SHRO) is non-profit charity committed to funding excellence in basic genetic research to cure and diagnose cancer, cardiovascular diseases, diabetes and other chronic illnesses and to foster the training of young doctors in a spirit of professionalism and humanism. To learn more about the SHRO please visit


Original Newswise Release

Healthier Planet, Healthier People, and More Innovative Medical Science with Italian-American Researchers at Annual NIAF Convention

Brochure  The Sbarro Health Research Organization (SHRO), in collaboration with Temple University’s College of Science and Technology, the National Italian American Foundation (NIAF), and the Giovan Giacomo Giordano Foundation will host the medical conference “The Impact of Environment and Healthy Lifestyles in Human Health” 9 A.M on Saturday, October 13th at the Marriot Wardman Park Hotel in Washington, D.C.

The conference will feature introductions presented by SHRO’s President Antonio Giordano who is also director of Temple’s Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology and by Temple University Vice President for Research, Michele Masucci, PhD. Temple and CST are leaders in biotech research and development, and recently launched masters programs in both bioinnovation and biotechnology.

Guest speakers include Roberto Lucchini, MD, Giuseppe Loianno, PhD., and Giacomina Massaro-Giordano, M.D. Dr. Lucchini,  Director of the Occupational Medicine Center of the Ichan School of Medicine at Mount Sinai NY and  professor at University of Brescia Italy, will address “Impacts of Environmental Hazards on Human Health: From the 9/11 Dust to the Industrial Emissions of Taranto, Puglia”. Dr. Loianno will discuss “Drones for Health: Agricultural and Infrastructure Monitoring” and Dr. Massaro-Giordano will report on “Dompe: FDA Approval of the First Medicine Based on Human Nerve Growth Factor: An Italian Pharma Success Story.”  A special recognition will be given to Nathalie Dompé for her work and effort promoting social responsibility and in particular with the visually impaired.

The conference will culminate in the presentation of the 2018 Giovan Giacomo Giordano NIAF Lifetime Achievement Award for Ethics and Creativity in Medical Research by  Dr. Giacomina Massaro. This award was established seven years ago in honor of Dr. Giordano’s father, the late Professor Giovan Giacomo Giordano, renowned pathologist and former chair of the Department of Pathology, Second University of Naples, who dedicated more than sixty years of his life to the study of cancer and the role of environmental factors in the onset of this disease.  Professor Giovan Giacomo Giordano was also a major advocate against corruption in the Italian medical community and driving force for the establishment of medical ethical standards among his colleagues. Furthermore, special guest, Ms. Nathalie Dompé, CEO Dompé Holdings, Vice President, Business Development at Dompé Pharmaceuticals responsible for the oversight, market development and strategic approval of all new programs launched by the Company in the United States, will receive the Special Award for Societal Impact in Business & Biotechnology.

About the Sbarro Health Research Organization

The Sbarro Health Research Organization (SHRO) is non-profit charity committed to funding excellence in basic genetic research to cure and diagnose cancer, cardiovascular diseases, diabetes and other chronic illnesses and to foster the training of young doctors in a spirit of professionalism and humanism. To learn more about the SHRO please visit

New MicroRNA Target May Inhibit Mesothelioma and Unveils Method to Identify Potential Treatments

Newswise — Inhibition of miR-24-3p reduced growth of cancer cells and was found to regulate proteins as a potential treatment target for Mesothelioma (MPM). The new potential target, and the method researchers have used to identify it, is an important step in addressing this challenging disease.

MPM is a lethal cancer with increasing worldwide incidence and resistance to treatment. Despite this dreadful scenario, preclinical research has struggled to identify potential treatments.

“The ‘one more indication’ strategy is not the right approach for Mesothelioma,” say Professors Antonio Giordano and Luciano Mutti from the Sbarro Institute for Cancer Research and Molecular Medicine at Temple University and the Italian Group for Mesothelioma (GIMe), referencing attempts to discover existing drug combinations that may yield an effective treatment. “Drugs with some activities in other tumours have utterly failed in MPM,” they say, “providing evidence we have to rethink what we have been doing so far and start over from a solid biological background.”

Researchers published their findings this month in Cancer Research, in the study titled A polysome-based microRNA screen identifies miR-24-3p as a novel pro-migratory miRNA in mesothelioma.

MicroRNAs (miRNAs) are small, non-coding RNA molecules, which target genes and regulate gene expression and function. Abnormal expression of miRNA plays a relevant role in cancer biology and they are therefore a potential target for the development of innovative cures.

“We have identified a novel approach for identifying relevant miRNA in cancer biology,” Professor Biffo of the National Institute of Molecular Genetics in Milan explains. “By examining the polyribosomes where translation occurs, this ‘focused’ search has allowed us to identify that miR-24-3p (a particular miRna) expression is relevant to cancer progression and metastasis.”

Biffo, in collaboration with the Sbarro Institute for Cancer Research and Molecular Medicine at Temple University, University of Siena, Columbus University, Leicester University, and supported by GIMe, has conducted a research program that has made significant steps forward in the fight against MPM.

“The first take home message for us is, ‘hunt where the ducks are,’” the authors say. “High levels of miR24-3p are detected only where they exert their biological effects (the polyribosomes), and increase tumour cell migration and Mesotheliomia progression via an enzyme family called Rho Kinase. These enzymes can be inhibited by specific drugs. Now it is time to translate our research into a pharmaceutical solution to develop this potential therapy,” the authors conclude.

Original Newswise Release

Olive Oil Production Threatened by New Deadly Plant Pathogen Recently Introduced to Europe

One of the iconic ingredients of the Mediterranean diet, which often has been associated with beneficial effects in the prevention of cancer as well as several other disorders, is extra-virgin olive oil. For thousands of years, olive trees were planted on Mediterranean coasts, initially by ancient Greek colonists, followed by several other civilizations and cultures, one generation after the other. This enduring agricultural practice led to the formation of the so-called “olive tree forest,” a monument to the Mediterranean environmental and cultural heritage containing millennial trees, found particularly in Southern Italy, in the Apulia region. Olive oil production from this region propelled and sustained olive oil consumption; however, this production is now endangered by a new, deadly plant pathogen, which arrived in Europe a few years ago.

“The olive orchards in Southern Italy are facing an ominous threat,” says Temple’s adjunct professor Enrico Bucci, PhD, Director of the Cancer Systems Biology & eHealth Programs of the Sbarro Institute for Cancer Research and Molecular Medicine at Temple University. Earlier in 2017, under appointment by the revered Accademia dei Lincei (one of the oldest and most prestigious scientific academies in the world), Bucci applied his skills in the fields of data mining and analytics, which he usually deploys in the field of Systems Biology, to extract and process data on thousands of Apulian olive trees, which led him to confirm the correlation between the bacterium and the disease. After that, he revised hundreds of scientific papers, detailing the ecology, the pathogenic potential, the molecular biology and all other relevant aspects of the interactions between the bacterium, its vectors and the host plants, publishing a new, state-of-art review, which got the cover of the Elsevier journal “Biochemical and Biophysical Research Communications.”

Fig. 3 from original research article: Some molecular details of the X. fastidiosa life cycle. rpfF, fimA, hxfA, hxfB, chiA, phoP/phoQ, PD1671 are all bacterial genes differentially expressed at various stages. DSF stands for “diffusible signalling factor”. See full text article for further details.

“The culprit of the epidemic, which is killing millennial olive trees and devastating the Apulian agricultural landscape, is the bacterium Xylella fastidiosa. Its pauca subspecies, which is colonizing Italy, is able to rapidly kill the olive trees, at odds with all the subspecies established in California, which mainly threaten vineyards and almonds,” says Bucci

There is no established cure for the infection; however, containment policies applied in California to prevent further spreading of the epidemic of Xylella in vineyards seem to work, suggesting that similar policies should also be enforced in Italy – after taking into accounts the obvious differences between olives and grapevines.

“As I learned by studying the available scientific literature, researchers from all over the world are working hard to find solutions, and there are indeed some promising approaches under study, aiming e.g. at blocking the infection or finding resistant olive cultivars – however, scientists need more time to accumulate stronger evidence. That’s why containing the infection in Southern Italy by all available means is crucial,” says Bucci, in line with the prevalent opinion in the scientific community.

“I hope that my article, by providing a revision of all the best available scientific evidence, will inspire politicians and local authorities to follow the scientific consensus, instead of the opinions of non-expert influencers or isolated, controversial hypotheses which lack solid scientific ground,” concludes Bucci.

Original Elsevier News Posting                      ScienceDirect Article        PubMed Abstract

Understanding Cancer Heterogeneity Could Further Reduce Chemo Use, Says Expert


Credit: Antonio Giordano

“Understanding cancer heterogeneity could further reduce chemo use,” says cancer research expert Antonio Giordano, MD, PhD, Director of the Sbarro Institute for Cancer Research and Molecular Medicine at Temple University. “Further study of cases that can successfully be treated with hormone- and immunotherapy, and how to identify them, will unlock this potential.”

Giordano refers to the TAILORx study, published by The New England Journal of Medicine this week, which describes treatment outcomes in breast cancer comparing cases receiving both endocrine therapy and chemotherapy, versus those receiving only endocrine therapy. Under certain conditions, including the early-stage development of tumor size, and the tumor not having spread to any peripheral lymph nodes, endocrine therapy alone resulted in nearly identical rates of survival and recurrence as endocrine- and chemotherapy combined.

“It is important to underscore that this specific study refers to patients with small tumors and no lymph node infiltrations,” says Giordano. “Women with early-stage breast cancer may be able to avoid chemotherapy, which is exciting, because there are pros and cons associated with it. The treatments have unavoidable effects on healthy cells as well as cancer cells”

“The goal of precision medicine moving forward,” Giordano says, “is to identify more sophisticated approaches to this problem of cancer heterogeneity. Every type of cancer, at the molecular level, can have a cell environment that changes and evolves through the course of the disease. Or from patient to patient.”

“Only by understanding specific targets or molecules responsible for key cellular processes will we be able to understand, with precision, new options of therapeutic target that could replace chemotherapy altogether,” Giordano says.

“The precision target is not yet precise enough,” Giordano says. “But the option to spare many patients the potential harmful effects of chemo is a sign we are moving in the right direction.”

Antonio Giordano, MD, PhD, Director of the Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University and Professor of Pathology at the University of Siena, Italy.

In 1993, Antonio Giordano, M.D., Ph.D., founded the Sbarro Institute with a generous donation from Mario Sbarro, the Founder of the Sbarro restaurant chain, following Dr. Giordano’s discovery of the tumor suppressor gene pRb2.

About Sbarro Health Research Organization

Sbarro Health Research Organization conducts research in cancer, diabetes, and cardiovascular disease. Based in Philadelphia, Pennsylvania on the campus of Temple University, our programs train young scientists from around the globe.

Original Newswise Posting                         PubMed Abstract

In Debate of Scheduled Versus Spontaneous Exercise, Which Motivates You More?

Older adults seem to be more motivated by scheduled workouts, including the role of a fitness coach or a significant person involved in their exercise goals, when compared to those getting exercise only through spontaneous physical activity.

Researchers tested a mathematical and psychological model on two different samples of older adults: the first doing spontaneous physical activity, the second engaged in an exercise class. This theoretical model tried to understand what is really important to  encourage and maintain the intention to do physical activity.

The results suggest a psychological construct called autonomous motivation, in which subjects experience a sensation of value and self-worth tied to the activities. Participants that felt a sense of autonomous motivation during an exercise program were more successful at beginning and maintaining a more healthy, active lifestyle, despite possible interruptions caused by physical discomfort or scheduling challenges.

The researchers published their findings in the journal Gerotarget, a section of Oncotarget. Psychologists from the faculty of Medicine and Psychology of Sapienza, University of Rome, led by Prof. Fabio Lucidi, partnered with the American research team of Prof. Antonio Giordano, Director of the Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, and University of Siena, Italy to produce the study.

The aging of the world’s population is a steadily growing phenomenon, with the older adult population expected to triple by the year 2050. Therefore, taking care of older adults is considered an important social goal. Physical activity and exercise are two behaviors that may prevent diseases, cognitive decline, and loneliness among older adults. Despite the well-established positive effects of physical activity and exercise, data shows that few older adults are engaged in these behaviors.

“This study,” explains first author Federica Galli, “shows clearly that the sensation autonomous motivation leads older adults to be successful implementing these healthy behaviors.”

“Thanks to the new therapies produced by oncological research, a lot of patients with oncological diseases will be able to live normal life expectancies,” Giordano adds. “For this reason, it’s very important to study the mechanisms to motivate people to exercise, given the therapeutic role of fitness and physical activity in oncological diseases.”

The study provides guidelines for professionals that work in preventive medicine in the older population, so that they can support the perception of autonomy that could increase their motivation to start and maintain physical activity and exercise.

“The NCI of Naples has always been sensitive to this issue,” says Scientific Director of the National Cancer Institute of Naples, Gerardo Botti. “In the future, I am already  considering the implementation of new studies that would consider the application of this model to target populations more at risk such as our oncology patients,” Botti says.


Original Newswise Posting